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Abstract were not widely adoptetf. Instead, local element-level

least-squares approachagpeared to benore attractive
A four-node, quadrilaterasmoothing element is pecause oftheir intrinsic computationakefficiency??
developed basedpon a penalized-discrete-least-squaresyowever, the local schemes do not recover a continuous
variational formulation. The smoothinmethodology syress field, and a subsequent nodal averaging is
recovers Gcontinuous stresses, thus enableffgctive  generallyused to achievahe stress continuity along
a posteriorierror estimation and automatic adaptive  element interfaceswith the recognition thatcertain
mesh refinement. The element formulatiororginated  jnterior stresses exhibisuperconvergent propertiés,
with a five-node macro-element configuraticonsisting  there evolved aclass of local proceduresinvolving
of four triangular anisoparametrmoothingelements  «projection’ of these stresses to the elemiatindary,
in a cross-diagonal pattern. This element patégm@bles  ajthough other local procedures were also propdsed.
a convenientclosed-formsolution for the degrees of Recent developments istress recovery procedures
freedom ofthe interiornode, resulting fromenforcing  have largely been motivated by a posterierior
explicitly a set of naturakdge-wisepenalty constraints. estimatiorf especially for use in automat@adaptive
The degree-of-freedomeduction schemieads to a very mesh refinement. In this context, polynomiaatch

efficient formulation of a four-node quadrilateral recovery procedures have been explored. Zienkiewicz and
smoothing element without any compromise in robustzp, .8 developedthe Superconvergent PatdRecovery
ness and accuracy of the smoothing analysis.appt-  (SPR) procedure,and various modifications of their
cation examples include stress recovery and error estimgpproach have been proposedbsequently* These
tion in adaptive mesh refinement solutions for an proceduresgenerally attempt to recover from the
elasticity problem and an aerospacestructural superconvergentstress points a stresfield with
component. superconvergerproperties. The latest formulation by
Boroomandand ZienkiewicZ*** explored yet another
polynomial patch-based procedurehich uses nodal
equilibrium rather than superconvergenstresses. In
general, patch procedures are usegtboverthe stresses
at nodes. If anode belongs to multiple patches, an
averaging proceduremust be used. The continuous
stressfield is thendefined in an adhoc manner by the
nodal stressesand the finite elementdisplacement
interpolation functions.

A major departure from other procedureghs finite
element-based recovemyethodology of Tessleand co-
workers*?* The methodology, which ibased on the
minimization of a Penalized-Discrete-Least-Squares
(PDLS) error functional, is highly effective and is
designed tgorovide improvedstress predictionsvith a
higher degree ofsmoothnessand to obtain robust a
posteriori error estimates.

The errorfunctional involves aliscrete least-squares
* Copyright © 1998 by the American Institute of Aeronautid§™m N W,h'Ch d|§crete finite element stresses are
and Astronautics, Inc. No copyright is asserted in the Unitegomparedwith continuousrecoveredstresses, a penalty
rSOtagl?tS llfrr;deelriéiélr?sgfouéié rcé%%eé”T?ie r&{-ssm%%\;etwéncegt f}?so@)nstraint term that enforces$-Gontinuity of therecov-
clgimgd herein for Governmental pu?poses. All rights gr)g g@?ed.s.tressesand acurvature-controkerm thatensures
reserved by the copyright owner. stability and robustness of the method. The post-

Introduction

The displacement-basefinite element method has
become a standard tool for structuaalalysis.However,
due toits inherent interelement stress discontinuity, it
generally requires a special post-processingjesovery’
procedure toenable improvedstress calculations. The
improvedstress predictionsan further be utilized in a
posteriori error estimation that in turnenables
automatic mesh adaptivity. The recovery procedures
developed to datean be classified as (dpcal (i.e.,
element-level), (b) patch-based, d¢c) global. The
simple averaging of nodalstresses fromadjacent
elements is an example of treémplest patch-based
stress recovery. Early attempts to employ gldbast-
squares procedures to obtain continuous stress fields
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processing isperformedvia the SmoothingElement constraint equationsre formulatedfor a five-node
Analysis (SEA) which itself is a finite element method. macro-elementconsisting of four triangles in aross-
As such, SEA has its own mesnd element-based diagonal pattern. Three of these equatiarsolved in
interpolation functions which minimize the PDIlg®or  closedform for the dof's corresponding tdhe interior
functional. The methodology isapable of recovering node. The resulting transformation relati@me used to
superconvergent stresses of higher accuaacicontinu-  formulate the four-node smoothing element in a
ity than the original finite element stresses. Thecomputationallyefficient manner.Numerical examples

approach is unique ithat therecoveredstressfield is

essentially &continuous. Inaddition to achieving a
higher degree ofcontinuity, SEA generally produces
more accuratestresses than th&PR method. The
smoothed stressamn be usedor design since they
representnore accuratestresses than the onebtained

include stressrecoveryand error estimation inadaptive
mesh refinement solutions for an elasticity problem and
an aerospace structural component.

SEAC onceptual F ramework

directly from a finite element analysis. They can also be The basic conceptual framework of the present stress

employed in a posteriogrror estimators. Importantly,
SEA fits perfectly in any general purpose finglement
codesince it has the samarchitecture aghe standard
finite element metho#:*

recoveryand error estimationapproach is illustrated in
Fig. 1. Basedupon a Finite Element Analysis (FEA),
which can be quite generahdinvolve either linear or
nonlinear solutiorprocedures, a subsequé&itoothing

The smoothing element developed by Tessler and c&lement Analysis (SEA) is carried out whidrscretizes

workers is a three-node triangle, incorporating a
guadratic interpolation for the stress,and linear

interpolations for the two normal stress derivatit/és.
Since the PDLSerror functional possesses fenalty-

constraint term, the use of anisoparametric
interpolations is key taenforcing pointwise C stress
continuity without developingthe detrimental locking
effect. The method is especiallyobust and effective
when the smoothing element discretization is

the same physical domain of tipeoblem. The SEA
employs the discrete FEA stresse8 as theprescribed
input data, using either Gauss integration psinésses

or superconvergergtresses. These stress locations are
preferred because dieir superioraccuracy compared to
other stresses. Alternatively, quantities other than stress
components can also be smoothed in the same manner,
for example, discrete displacementdatal* strain
measures$) stress invariants, element strain energies, or

represented by quadrilaterals consisting of four triangula@ny other discrete data of interest.

smoothing elements in aross-diagonalpattern. The
resulting macro-elementconsists of fivenodes, each
having three degrees-of-freedom (dof’s).

In this paper, a computationally efficiefdur-node
guadrilateral smoothing element isdeveloped. The
element is derived from a five-node macro-element
consisting of four triangulasmoothing elements in a
cross-diagonal pattern. This element patrables an
exact closed-fornsolution for the dof's of the interior
node, resulting from enforcing explicitly a set redtural
edge-wise penalty constraints. Thalegree-of-freedom
reduction schemgives rise to dour-node quadrilateral

smoothing element which has obvious computation

advantagesover the five-node macro-element. In
particular,its mesh results imearly one-halfthe dof's
than would a corresponding cross-diagonal
constructedvith triangular elementsBecause an exact
closed-form solution is used for the reduction, no
compromise ismade in terms of robustness an
accuracy by reducing the dof's.

The conceptuaframework and variational basis of
SEA/PDLS arefirst discussedThen, smoothingequa-
tions for a triangular element are derived on the basis
consistentanisoparametrignterpolations for the stress
and two normal stress derivativegkight edge-wise

2

The SEA itself is a finite elementethod and
requiresits own mesh which irgeneral cardiffer from
the finite element analysis mesh. Thus, threblem
domain Q is discretizedwith ng smoothing finite

elements such tha =02¢ Q°, where Q° is the

domain of asmoothing element. Withirachsmooth-
ing element, apenalized-discrete-least-squar@3DLS)
error functional is formulated and is basedupon a
smooth stresso® and two stress-gradient variables.
These field variableare interpolatedwith compatible
shape functions thansure a practicall;Cl-continuous
gtressfield and cP-continuous stress gradients. The
total PDLSerror functional contributed byall smooth-
ing elements in thealiscretization is minimizedvith

mesHespect toall dofs of the smoothingfield variables.

The resulting smoothing equations, whitdwve a stan-
dard linear algebraicform, produce animproved and

d Pointwise smooth stresfield. The recoveredsmooth

stress field can either be used directly for desigoula-
tions or theycan be employed for @osteriori error
estimation in an automat&daptive refinement process,
yyhich is perhaps of greater significance.
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FEA

- Perform FEA I Oh
- Compute discrete QN stresses -

SEA
- Perform SEA for each stress I g°

- Recover accurate C 1, OS stresses

Error Estimation for Adaptive Refinement

- Compute error norms |
- Generate adaptive mesh

g - 0“”

Fig. 1. Smoothing element analysis for stress recovery and error estimation.

In developing a practical and theoretically appropriateQ = {x [ 02}, for which x={x,y} denotes the
framework for the application of SEA to built-up position vector in Cartesian coordinates. Asll be
structural models, such as thdsend in aerospace and shown subsequently, thisvo-dimensionalframework
automotive structures, it is important tealize that can be readilyextendedor application to typicabuilt-
stresses belonging tdifferent structural components up aerospace shell structures.
may, in fact, be physically discontinuoushere such For a single smoothing element within a SEA
components intersect. Moreover, in most casasess mesh, the PDLS error functional may be expressed for a
components in one shell or beam segmeatld lack  given stress componeit as
the same definition in anotheegment. For thegea-
sons, it may not be meaningful to employséheme
which wouldrequirecontinuity of stresses alongfruc- ®° =

ne
Y [0 -0 (xq))* +
tural interfacesAlso, the usualaveraging of stresses 9=1

1
N

along structurainterfaces wouldften result inerrone- n®

ous stress results at the given interface andgtimeund- ay fel(0% - 6%)° + (0%, - 67)%1dQ +

ing region. e=1 1)
The application of SEA to built-up structures is n®

undertakenherein by associatingndividual structural BZQeJ'Qe[(ei,x)z +(85,,)% +

segments with anindependent SEA mesh. This e=1

approach should be applicable to one-dimensional 3(95 +05 )Z]dQ

(beams and trusses), two-dimensional (plates and 27 %Y X

shells), and three-dimensional (solid elementodels)

structural finite element approximations. Thus thewhere, for simplicity, the usual tensorial subscripts for
SEA discretization wouldconsist of distinctdomain- the stressare omitted; a commadenotes partial
basedmeshesgachtotally independent othe adjacent differentiation, 0 and B aredimensionlesgparameters,

SEA domain. The SEAlomain-based framewonkill and N denotesthe total number ofsampleddiscrete
be further illustrated on &uilt-up aerospace structure stresses. For smoothing purposés, is treated as a
discussed in the Numerical Results section. scalarquantity. As will be demonstratedshortly, the

variables 87 (i=x,y) representthe first-order partial

derivatives ofa® with respect to the spatiabordinates.

The mathematical foundation of SEA is described fofr he finite element stresfield is evaluatedor sampled)

a stresdield defined on dlat two-dimensional domain, " €ach elementatq (q =1, 2, ...,n%), to obtain the

ErrorF unctional
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: hy h__h
set of discretestresses{og}, i.e., 0q=0"(Xq), and
where 17 is the number of theampledstresses within

the element. Because the highest partial derivative in (J(f

is of order one, thefield variables need only be
approximated with cP-continuous shape functions.
The functional is minimized withrespect toall nodal
dof's andyields a system of lineaalgebraic equations
which must be solved for the dof’s.

The first term in (1) is anormalized discrete least-
squaredunctional in which thesquarederror’ between
the smoothed stredield andthe sampledstressdata is
computed forall sampledstresses. Theecondterm in
(1) represents a penalty functionalvhich, for
sufficiently large a, enforcesthe derivatives of the
smoothed stress field:si to approactthe corresponding

87 variables pointwise, i.e.,

0% -8 (i=xy) in Q° 2)
The greaterthe value ofa, the closer thecorrelation
between o and 6f, where C' continuity of ¢® is

achieved ast — . For thepractical application of the
method,a needs to besufficiently large inorder to
enforce conditions (2); however, it shouldot be
excessively large to causdl-conditioning of the
smooth solution. Therange a=10*—10° has been
demonstrated in previous studies to be gadequate for
these purposesBecause 67 are interpolated with

A notable observatioregardingthe functionalform
of the penalty-constrairand curvature-controterms in
) is that theycan be seen as mathematiaablogs of
e transverse sheand bending energies in Reissner-
Mindlin plate theory. In this connectiorsuccessful
element technologiedevelopedfor plate elements can
equally be applied in this formulatiofi:*’

SmoothingE |lementl nterpolations

The description of a convenienand effective
interpolation strategy for thdield variables to be
approximated in (1) is addressed. Although the
functional in (1) admitsCC-continuous shape functions
for the field variables®, 65, and 6y, the constraints in

(2) severelylimit the suitable choice of the shape
functions. Thereasons for these restrictiotis in the
character ofthese constraint equations. Unleagpro-
priate interpolationsire selectedor the field variables,
the resulting solution will suffer from ‘locking’ In the
context of the smoothing analysis, ‘locking/ould be
manifested bythe smoothedsolution that grossly
underestimates the stress field andhiss rendered to be
useless. The locking effect and the computatiomans
of avoiding it have beestudiedextensively,especially
in the context of shear-deformablebending finite
elementg®>?” Although the earlier approachefavored
reduced integration of the penalty term (a counterpart of
the secondterm in (1)), theimproved understanding of
this phenomenon in recent years seemfavor the use

practical purposes, can achieve ct
throughout thed domain.

The third term in (1)involves squaredfirst deriva-
tives of the8 variables which, iraccordancavith (2),
representhe curvatureqi.e., secondpartial derivatives)
of the smoothed stredield in the limiting sense(i.e.,

oﬁj _,Oﬁj) For the shape functionsubsequently

continuity

consideredfor the smoothing element, th@ﬁj terms

representhe curvatures othe smoothed stress exactly.
The third termimposes a constraint condition on the
stress-curvature fieldhe severity of which igoverned
by the value of theparameterf. When the sampled
stressdata is perceived to heasonably accuratéhe 3

parameter needs to be very small, particularly in relation

to the penaltyparametenr. For thesampledstressdata
exhibiting substantiaérror, largervalues of3 need to
be used tosmoothor filter the data. A more general
form of (1) which enables the use @ppropriate
weighting functions for the firsand seconderms can
be found in Ref. 20.

4

both in the constraintand variational sense. Such
interpolation approaches, interchangeabtglled inter-
dependent and anisoparametric were originally
introduced byTesslerand co-worker$®# in their shear-
deformable beam and plate formulations.

The three-node triangular smoothing element
employs the anisoparametric interpolations of the
lowest order, that is ¢® is interpolatedwvith a complete

quadratic polynomial anthe 85 and 6y employ linear
interpolations. Irreference tahe notation in Fig. 2,

these smoothing element interpolations may be
expressed in matrix form as :

0° =Ps+Qys, +Qys, =Nd°,
®3)
6% =Ps,, 6 =Ps,
where s=[0,,0,, 05,5 =[6,,,6,, 0.4, and
s, = [6y4, 6,5, 6y3]T arethe vectors ohodal dof's, and
P, Q,, and Q, are the row-vectors of linear and
quadratic shape functions, respectively. Thiater-
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polation functions given in terms of triangularea-
parametric coordinateg, = [{,, {,, {5], can be written
as

A=, Qa =5 @did) ~aiid),

Qi =5 (2% = Bilidy)

@)

in which
7 = Ci +hjx+ay
! 2A

1
Ci =XjYk ~XkYj, A :E(a3b2 —aphg),

& =X TX, b=y,

with A representing the area of a triangular element, and

X, Yy the nodal Cartesian coordinates; ithe foregoing
equations, the subscriptare given by the cyclic
permutation of i=1,2,3, j=2, 3, and k =3, 1,
2. Note that these interpolatioage consistent with a

three-node element which has only three dof’s per node.

y 3

..

DOF

[ J g, exy 9y

2

Fig. 2. Notation for three-node anisoparametric
smoothing element.

The following attributesielineate the mostnotable
benefits of thethree-nodeanisoparametric triangular
element for utilization in SEA: (a) The element
interpolations (3) and (4) ensutteat thegradient of the
smoothed stress:ﬁ, is the samelegreepolynomial as

that representing 67, i.e., they are both linearly

distributed acros®° thisinterpolational consistencis

the key to theproper element-levelresolution of

constraints (2), (b) The triangular element permits
one-to-one linearmapping between the global and
element(area-parametricoordinatesthus allowing a
straightforward mapping of the samplstlessdataonto

the smoothing element,and (c) The quadratic

distribution of ¢® is relatively low order andthus

ensures sufficient robustness of the mettoadh in

terms of interpolation and extrapolation.

SmoothingE quations

The element smoothing equations are obtained by
introducing (3) into (1) and taking the first variation

5

with respect to the nodal dof’s (i.&d®® = 0), giving
rise to

K®d® =F° (5)
whered®is a vector containing the elememidal dof’s,
K®is a symmetric, element smoothing matwad F®

is a consistentright-hand-sidevector. The element
matrices are given as

Ke=KE+Kg +Kg

_l T T
= 2 NgNg +af . BgBg dQ +
g=1 (6)
BgéﬁfBgDBBdQ,
e Os 0O
1M g 0 O
Fezﬁ oqNg, d°=00
g=1 a
0
and
_EP,X Qx,x P Qy,x U
N O T
Y X,y yy 0
0 P, OS A o OE
%=% 0 Rﬂ]D=% 1 0p
W 1]
@ Py Pxg E) 0 320

wherethe element matriX © is comprised othe error
matrix, K ¢, the penalty-constraint matrix &, and the
curvature-control matrixKg; andN,=N(x,). Equation

(6) is integratedising exactintegration formulasNote
that integration ong is trivial since itsintegrand is

constant.

The global smoothing equationsKd=F, are
obtained using the usual finite element assembly
operationand aresolved for each stress component.
Conveniently, K€ dependnly on the elemenshape
functions thatare evaluated athe sampled stress
locationsand doesiot involve the stress values. This
means that the smoothing of andividual stress
componentcorresponds to a differenight-hand side
only, stored inthe F vector. Thus,regardless of the
number of smoothed quantities, the glolal matrix
need only be assemblead factorecbnce. Employing a
very small B paramete(say, 1¢) assures thak is
nonsingular even wherthe minimal number of
sampling stresses, N=3, is availalfle Although this
aspect permits a great range of possibilities for
constructing a SEA mesh, it is highigesirable for
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automation purposes that the SEA meshideeatical to
the FEA mesh.

Four-NodeQu adrilateralv iaE dge
Constraints

The three-noddriangular interpolationslescribed in
the previous section are particulagiffective androbust
when thesmoothing elementiscretization is locally

represented by quadrilaterals consisting of four triangularg3

smoothing elements in eross-diagonapattern®* 2! The

resultingmacro-elemenbas five nodesand atotal of

15 dof's. Such a macro-element, in whiaehge penalty
numbers ensurevirtually exact satisfaction of the
constraints (2),can be usedwithout causing any
locking-type deterioration, or evermegradation in
accuracy.

Once (3)are introducednto (2), a straightforward
manipulation of the resultingquationsproduces three
edge-wise constraints petement. It then follows that
the five-node macro-elemenfrefer to Fig. 3) would

possess a total of eight such edge constraint equations —

four interior andfour exterior. Replacing thé&miting
condition with that ofequality in (2), which for large
values ofa should be valid forall practical purposes,

the edge constraint equations can be written in the form:

Interior E dgeC onstraints

Gi =0sg = aj5(6yi +ex5)+bi5(eyi +ey5)1 7
i=1,2,3,4
1 1
where a5 :E(Xi ~-Xs), Dbijs :E(Yi -Ys),
ExteriorE dgeC onstraints
0, —0; =g (B +8Xj)+bij ((9yi +eyj), (8)

i=1,2,34 j=2 3,41
1 1
where & = (xi =xj), bjj == (i =Vj)

Adding the four equations in (Tesults in the solution
for ag,

1
05=5 3 |01 ~ais8y ~bisByi| 28,5 D65 (9)
454

1
where azg(x1+x2 + X3+ X4 —4X5)

6

1
and b=§(Y1+Y2+Y3+y4—4y5)-

Furthermore, a straightforward manipulation of the
equations in (7) and (8) yields the matrix equation for
the 6,5 and, 5 dof's, i.e.,

(Fags 0 DT%BXlE

8313 ‘335% meE

Hags a4 E x3[

x5%:iﬂbz4 b3 0 &g @M%(m)

%ﬁ@ Aq Hag a3 H¥bys 0 O Ebylm

Obis b Eeyzg

Op b,, J

0°2s P24 [ﬁy3g

0 b
g 35 0 %y4@

where Ay = 2(agb,,apy is the area of the
quadrilateralmacro-element. Equations ($nd (10)
providethe explicit relationsbetweenthe dof's at the
cross-diagonal node (node 5) ahé vertexnodes of the

quadrilateral.
DOF

e T, 6, ey

4 3 4

| Explicit
Constraints,

2 2
Fig. 3. Reduction of five-node macro-element to four-
node quadrilateral via edge constraints.

There aretwo equivalent approaches @mploying
the reduction equations (9and (10) to construct the
four-node quadrilateral: (a) The element matrices for the
four triangles comprising théive-node macro-element
are pre-imposed and multiplied by the appropriate
transformation matrices,; (j=1,4), resulting from (9)
and (10). This process is variationally consistamd is
commonly employedvhenevertransformations ofiof's
are performed(b) Alternatively, (9)and (10) may be
used directly tomodify the interpolation functions for
each of the four triangles in thefive-node macro-
element. Using the foremost method, theadrilateral
element equations are as follows:

K§dg =F§ (11)

K&= Y T KfT), F§= 3 T Ff,
j=14
and

d8 ={0;.6.0,)  (=1.4),
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and wherethe summation isover the fourtriangular
elements.
It should benotedthat static condensation of the

interior dof's would result in the same solution as the

guadrilateralsmoothing solutiondue to (11), however
the systems oéquationsare in differentbasesand are
thereforenot identical. Inaddition, static condensation
is not as computationall\efficient as the explicit
reduction equations (9) and (10).

Numerical E xamples

Two adaptivemeshrefinementsolutions are carried
out to demonstrateghe robustnesgand accuracy of the
smoothingmethodandthe computationakfficiency of
the four-node smoothing element. First, &inearly
elastic plate with a smallcentral hole under
compression is analyzed to verify tequivalence of the
five-node, cross-diagonal pattern macro-elenaect the
four-node quadrilateral, and to demonstrate the
computationakefficiency of the four-nodeelement. The
second numerical solution deals with a built-up
aerospacstructural componentinder compression and
bending,where shell elementsare located in different
planes. In this structure, stresses at shell junctions
in generaldiscontinuous,and for this reason, SEA is
performed on different domains independently.

All  computations are obtained with NASA's
COMET-AR (COmputational MEchanicgestbed -
Adaptive RefinementfFEA code on anBM RS6000
workstation usingnine-nodefully integrated Lagrange
shell element$ Theseshell elementsare somewhat
stiff in bending, however, thegrerelatively insensitive
to mesh distortion — aaspectthat is paramount in
adaptivemesh refinement. No speciebnsideration is
taken for modeling shelfjunctions. The smoothing
mesh generation i&ully automaticand uses thesame

refinement tolerance isubdividedinto nine elements.
The average element error is computed as

E
Rave = ——&—— (12)
|1Jref e
@ Nelts@

in which E; is the element error energy norm given as
1

>
Eo= % - SHTctss-shHdal . (13)
W% 0

0 Qe U

The vectorsS" andS° contain, respectively, eight FEA
and SEA shell stress componentg, N6 the number of
finite elements, an@ is an 8x8 constitutive matrix. In
(12), U%" is the referencestrain energydefined as the
finite element strainenergy corrected bythe global
error

U=+ B (14)
1
O 2
where E= Dz E%/U 0
are ets H

with U" and U denoting the total strain energies
corresponding to the FEA and SEA stress fields,
respectively.

PlateWi thH ole

A two-dimensional elasticity problem enalyzed to
demonstrate the robustness and efficiencgBA in the
context of automatiadaptiverefinement. Arectangular
aluminum plate (thickness = Qit., E = 10 Msi,v =
0.3) issubjected to aensile uniformdisplacement of
0.1 in. along anedge parallel to the y-axis that is

quadrilateraimesh as that of the finite element modelsconstrained tomove only in the xdirection (refer to

The FEA stresses asampled athe 3x3 Gausgoints.

Fig. 4). The oppositeedge isclampedand the edges

In the smoothing mesh, these points are located with gshrallel to the x-axisare free. The problem is

efficient search algorithrif.

ErrorE stimationa ndA daptive
Refinement

particularly challengindgecausghe hole is verysmall,
d/w=0.05,where d isthe hole diameter. This aspect
tends to produce distortecelementsaround the hole
where a stress concentration takes place.

To demonstrate robustness of the smoothing elemestngularities at the plate corners, where digplacement

due to element distortion, aspect-ratio tolerararesnot
set in theadaptiverefinement. Insteadthe maximum
number of refinement meshes is specified.

Adaptive mesh refinement is performed using
transition-based refinement strategwgh a specified
refinement tolerance. Any finite elemeexhibiting an
averageelement error, R, greaterthan the specified

boundary conditions are prescribed, provide another
challenge for the adaptive refinemént.

The initial mesh (Mesh Oand three consecutive,
automaticallygeneratedneshesare depicted inFig. 4.
At each refinement step, finite elements ofjreater
distortion and smaller size are generated.This is
especially truenearthe holeand atthe platecorners —

Stress

the regions of high stress gradients. By applying SEA
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! ) Mesh O Mesh 1
';" P
L 20" J
Mesh 2 Mesh 3
T S F e
i S i Sha

Fig. 4. Plate with hole. Initial (Mesh 0) and three refinement meshes.

340 In Fig. 5, the equivalence between the five- fmd-
node quadrilaterasmoothing solutiondor Mesh 0 is
O Fve-Node ] demonstrated. At point A located at the top of tiode
B\m—lax 100% perimeter, where the axial stress resultant ,Nis
\ x maximum, the solutions approach the same value as the
\{ penalty parametera  becomes larger. Apparently, the
\ four-node solution does not suffer from any loss of
— _ | accuracy as a result of the explicit @etluction inherent
in the element formulation. Even at relativedgnall
o values ofa (0=10), the two SEA solutionarewithin
a 0.0003%. This excellerdegree ofcorrelation is typical
Fig. 5. Percent difference in Nt point A due to five-  for the highly stressed regions in the plate.

and four-node quadrilateral SEA solutions. Having fewerdof's andachieving equivalertesults,
the four-nodesmoothing element is significantiyore

efficient than the original five-node macro-element.
This aspect is clearlydemonstrated inFig. 6 which

compares CPU time for the two SEA modeling

approaches. Evidentlyhe largerthe mesh, thegreater

the computational savings attainddus, for Mesh 3,

the SEA computation is reduced byaator of 6.6 with

the use of thefour-node smoothing quadrilateral

element.
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Hat-Stiffened P anel

The hat-stiffenedpanel is an example of a built-up
Fig. 6. Comparison of CPU time for SEA with four- aerospacstructural component. The panel dimensions
and five-node quadrilaterals. and boundaryconditions inFig. 7 are shown on the
initial (Mesh 0) discretization. The rightedge of the
for each mesh, robust stress smoothirand error panel issubjected to a compressiexial (x-direction)
estimation isachieved. For Mesh 3, possessing 4,476 displacement 00.1 in., including the stiffener edge.

finite element dof's, a global error norm of less than 1%l he oppositeedges ofthe panelandstiffenerare fixed.
is obtained. Along the side edgessymmetricboundary conditions

are prescribed. Where&&EA is carriedout with anine-

>
w
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| o E = 10 Msi, Hole Diameter = 1.1"
Clampe P 33" _ | v=0.28, Thickness=0.1"

Symmetric

107
Symmetric -

Fig. 7. Hat-stiffened panel.

node Lagrangshell element, SEA iperformedusing domain, stress resultandse defined tocorrespond to a
the four-node quadrilaterakith the elemenparameters convenientcoordinatesystem,and these stressompo-
set ato = 1¢ andp = 0. nents are smoothed independently. Agach refinement
From the structuratesponse standpoint, thmanel step, error estimation is undertaken based ordtineain
has a number of challenging aspedts:the stiffness smoothed stresses. The distributions of #werage
eccentricity due tdhe hatstiffenerlocated ononly one element errofrefer to (12)) corresponding téhe initial
side of the panelcauses local bending, (b) stressand two adaptive refinement discretizationsstrewn in
concentrations occuslong the hole perimeteand (¢) Fig. 9.
singular stressedevelop atthe ends ofthe stiffener- An examination of specific stress distributions
panel junctionswherestresseare transferred according computedvia FEA and subsequentSEA for error
to theshear-lagnechanism. It must beotedthat the estimation, further validates the effectiveness and
initial mesh isvery coarseand doesiot addressany of  robustness of the SEA stresecovery. The typical
the aforementioned issues. stress results are depicted in Figs. 10 and 11, which also
Knowing that stress fields at thstiffener-panekhell  display the number of dof's and CPU time for ddire
junctions are generally discontinuous, the application dFEA and SEA computations, including model
SEA is carriedout onseparateindependentiomains to  definition. The SEA CPU time includes the smoothing
avoid unphysical smoothingcross thesgunctions. In  of all eight shell stress components (ithree in-plane
Fig. 8, thepanel modeledwith Mesh 0 isbroken-up stress resultantsthree bendingmoments, and two
into nine independensmoothing domains. Withieach transverse shear stress resultants) for each domain.

Fig. 8. Hat-stiffened panel. Independent smoothing domains.

9
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15 %

2%
0%

Fig. 9. Hat-stiffened panel mesh. Refinement steps and associated average
element error.

Local Detall
(bottom view)

FEA/Mesh 1
DOF=7516

CPU(sec)=3 M. (Ib)
5
30
SEA/Mesh 1
DOF=1500
PU(sec)=50 10

Ref./Mesh 2
DOF=25,532
PU(sec)=19

Fig. 10. Hat-stiffened panel. Distribution &, bending moment.

Figure 10 shows theM, bending moment Since the domain-bas&EA doesnot enforcestress
distribution, where the FEA results for Mesh 1 are continuity across domainjunctions, the resulting
averaged aall common elemenboundaries, enforcing smoothed M, distribution is considerably more
stress continuity at the shell junctions. This type ofaccuratethan that of the FEA, strongly resembling the
post-processing isstandard inmost general-purpose reference solution. Observe that SEA-based My
finite element codes. Faeferencepurposes, the results distribution is nearlycontinuousacross domainsvhere
for a highly refined mesh (Mesh 2) are used. it is expected, without beingnforced (refer tahe local

details in Fig. 10). Also note that SEA-baség,

10
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FEA/E/Iesh 1 Local Detail
DOF=7516 (bottom view)
CPU(sec)=33 N,, (Ib/in)
11,00
SEA/Mesh 1 o0
DOF=1500
CPU(sec)=50
2,20
-2,20
Ref./Mesh 2
DOF=25,532
CPU(sec)=196 080
-11,00

Fig. 11. Hat-stiffened panel. Distribution df,, stress resultant.

An example of quantitative stress improvement

< =
E 1oE associated with the SEfecovery isshown in Fig. 12,
o - . . . .
a = where, corresponding tblesh 1, N, is examined in a
©_ — region of high-stress gradient. It is seen that at point A,
ix 20 E_ which is locatedclose to theedge ofthe left stiffener,
= o there is a38% reduction inthe error for N, due to
5 = smoothing.
= =
oE [ )
FEA SEA 10" -
Fig. 12. FEA and SEA (Mesh 1) accuracy comparisons B
for N,y at point A. < I
§ -
‘uncovers’ the physical stress concentrations that are not < [
particularly evident from the FEA results. S
In Fig. 11, the in-plane shearresultant Ny
distributions for Mesh land Mesh 2 (reference) are 109 . .

presented. Theseesults demonstrate once again the 102 10° 104 105
importance of théndependent domain-basschoothing DOF

for stress post-processing. For example, tl;gg dress _ _

resultantdefined in the stiffener which intersects the Fig. 13. FEA global percent error in energy norm vs.

base panel has a different definition than that inbifmse dof's.
panel. Yet, unless speciahre istaken, these results _ _ _
are commonly averaged at the shell junctigmegducing It is evident thaiSEA-basedstressrecovery iseffec-

erroneousresults at the intersectiorend surrounding  tive in identifying stress concentrations melatively
regions. With thedomain-basedSEA, however, stress coarse FEA models, which allows for maepid global
continuity is notenforcedacross the distinatiomains ~convergence in adaptiveesh refinement. Theonver-
and physically meaningful stressesre recovered. gence of the adaptive refinement process is illustrated in
Observe the similarities of the SEAand reference Fig. 13. In the figure, the global FEgercent error in
distributions. the energy nornfcomputed according t@l4) by adding

11
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all element contributions) is plotted versus thanber
of finite element dof's.

ConcludingR emarks

A four-node quadrilaterasmoothing element has
beendeveloped as eesult of an explicitdof reduction
solution. The originafive-node macro-elemerfibrmed
with four smoothing triangles in across-diagonal
pattern has beemduced to dour-node quadrilateral by
exactly enforcing aset of naturaledge-wiseconstraint

7.

equations. The method, smoothing element analysig,

provides C-continuous recoveredstress distributions
based orthe minimization of apenalized-discrete-least-
squares error functional. Theror functional involves a
discrete least-squareerm in which discrete finite

element stresses are compared with continuemmered g

stresses, a penalty constraint term teaforces &
continuity of the recoveredstresses,and a curvature-
control term that ensures stabiligd robustness of the
method. Thefour-node element is shown tgrovide
equivalentresults with the original triangulaglement
while significantly decreasingcomputational cost. The
recovered &continuous stress distributiortgave been
employed in aposteriori error estimation in NASA's
COMET-AR finite element code, thus enabliafficient
adaptive mesh refinemesblutions,including those for
built-up aerospace structures.
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